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1 Volume Bounds for Metric Entropy and the Chaining Method

1.1 Recap: one-step discretization bound

Last time, we began discussing the metric entropy method for obtaining bounds on empir-
ical processes. We have a metric space (T, ρ), and we want to control

E
[
sup
θ∈T

Xθ

]
or E

[
sup
θ∈T
|Xθ|

]
,

where Xθ is usually mean 0 and sub-Gaussian. We introduced the metric entropy is
logN(ε;T, ρ), where N(ε;T, ρ) = inf{N : |Tε| = N,Tε is an ε-cover} is the ε-covering
number.

Here is the one-step discretization bound that the maximal inequality gives us:

Lemma 1.1. If Xθ ∼ sG(σ) for all θ ∈ T , then

E
[
sup
θ∈T
|Xθ|

]
. inf

ε
inf

ε-cover Tε
E
[

sup
θ∈Tε
|Xθ|

]
+ E

[
sup

ρ(θ,θ̃)≤ε
|Xθ −Xθ̃

|

]

. inf
ε
σ
√

log(N(ε;T, ρ) + E

[
sup

ρ(θ,θ̃)≤ε
|Xθ −Xθ̃

|

]

Today, we will mostly discuss the case where T ⊆ Rd is Euclidean space, and Xθ is some
canonical random variable, such as Xθ = 〈ε, θ〉 or Xθ = 〈W, θ〉, which give the Radamacher
and Gaussian complexities. We will give a volume-based method for bounding the covering
number, give some examples, and then introduce the chaining method, which will give us
a sharper bound.

In the next few lecture, we will extend this discussion to T = F ⊆ Lp(P) for 1 ≤ p ≤ ∞,
with Xθ = 1

n

∑n
i=1 εif(Zi) or Xθ = 1

n

∑n
i=1(f(Zi) − E[f(Zi)]. We will also relate this to

and extend our VC theory.
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1.2 Volume bounds for metric entropy

We want to understand the ε-covering number for T ⊆ Rd. The intuition is that

logN(ε;T, ρ) � log
Vol(T )

Vol(Bρ(ε))
,

so we can understand the covering number by understanding the volume. Here, we use the
notation

Bρ(θ, ε) := {θ̃ ∈ Rd : ρ(θ, θ̃) ≤ ε}, Bρ(ε) := Bρ(0, ε),

Vol(T ) =

∫
1{x∈T} dx,

where dx is Lebesgue measure.
Last time, we introduced the notion of the ε-packing number

M(ε;T, ρ) = sup{M : |T̃ε| = M,M is an ε-packing of T}.

This was related to the covering number by the following lemma.

Lemma 1.2. For all ε > 0, we have

M(2ε;T, ρ) ≤ N(ε;T, ρ) ≤M(ε;T, ρ).

Lemma 1.3.

Vol(T )

Vol(Bρ(ε))
≤ N(ε;T, ρ) ≤M(ε;T, ρ) ≤ Vol(T +Bρ(ε/2))

Vol(Bρ(ε/2))
,

where T +Bρ(ε/2) = {a+ b : a ∈ T, b ∈ Bρ(ε/2)}.

Proof. For the first inequality, let Tε be an ε-covering, so T ⊆
⋃
θ∈Tε Bρ(θ, ε). This tells us

that

Vol(T ) ≤ Vol

 ⋃
θ∈Tε

Bρ(θ, ε)


≤
∑
θ∈Tε

Vol(Bρ(θ, ε))

≤ |Tε|Vol(Bρ(ε)).

For the second inequality, let T̃ε be a ε-packing, so the union of all the balls in the
packing is contained in the set augmented by ε/2. That is,

⋃
θ∈T̃ε B(θ, ε/2) ⊆ T +Bρ(ε/2).

This tells us that

Vol(T +Bρ(ε/2)) ≥ Vol

 ⋃
θ∈T̃ε

B(θ, ε/2)


2



= |T̃ε|Vol(Bρ(ε)).

Now take the sup over all packings.

Example 1.1. Let ρ = ‖ · ‖p and T = Bp(1) = {x ∈ Rd : ‖x‖p ≤ 1}. Then

N(ε;T, ρ) ≤ Vol(T +B(ε/2))

Vol(B(ε/2))
=

Vol(Bp(1 + ε/2))

Vol(Bp(ε/2))

Note that Vol(Bρ(r)) = cd,pr
d for some constant cd,p. We do not need to know the value

of cd,p because we are looking at ratios of volumes. This gives

N(ε;T, ρ) ≤ (1 + ε/2)d

(ε/2)d
=

(
2

ε
+ 1

)d
.

We also get the lower bound

N(ε;T, ρ) ≥ Vol(Bp(1))

Vol(Bp(ε))
=

1d

εd
=

(
1

ε

)d
.

So we get bounds on the metric entropy

d log

(
1

ε

)
≤ logN(ε;T, ρ) ≤ d log

(
2

ε
+ 1

)
.

These bounds are of the same order. Note that the bounds do not depend on p because
we are looking at the p-ball in the p-norm.

Example 1.2. Consider Wi
iid∼ N(0, 1), so 〈W, θ〉 ∼ sG(‖θ‖2). Then we know that

G(B2(1) = E

[
sup

θ∈B2(1)
〈W, θ〉

]
= E[‖W‖2‖ '

√
d.

Here is another way to get this computation:

G(B2(1)) ≤ C

 sup
θ∈B2(1)

‖θ‖2︸︷︷︸
=1

√
logN(ε;B2(1), ‖ · ‖2)︸ ︷︷ ︸
≤
√
d log(1+2/ε)

+EW

[
sup

‖θ−θ′‖2≤ε
|Wθ −Wθ′ |

]
≤ C

[√
d log(1 + 2/ε) + EW

[
sup

‖θ−θ̃‖2≤ε
〈W, θ − θ′〉

]]

= C

[√
d log(1 + 2/ε) + EW

[
sup
‖r‖2≤ε

〈W, r〉

]]
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= C


√
d log(1 + 2/ε) + εEW

[
sup
‖r̃‖2≤1

〈W, r̃〉

]
︸ ︷︷ ︸

G(B2(1))

 .
This tells us that

G(B2(1)) ≤ C
√
d log(1 + 2/ε) + CεG(B2(1)).

If we take ε ≤ 1
2C , then we get

G(B2(1)) ≤ 2C
√
d log(1 + 4C) �

√
d,

which is the same order as before.

1.3 The chaining method

We have been using the bound

E
[
sup
θ∈T
|Xθ|

]
. inf

ε
inf

ε-cover Tε
E
[

sup
θ∈Tε
|Xθ|

]
︸ ︷︷ ︸
bdd by covering number

+E

[
sup

ρ(θ,θ̃)≤ε
|Xθ −Xθ̃

|

]
︸ ︷︷ ︸
how to give tight control?

Controlling the right term can require ad-hoc arguments. The chaining method gives a
way to bound this effectively.

Definition 1.1. {Xθ}θ∈T is a sub-Gaussian process with respect to ρ on T if

E[eλ(Xθ−Xθ′ )] ≤ eλ2ρ(θ,θ′)2/2,

or, equivalently, Xθ −Xθ′ is sG(ρ(θ, θ′)).

Example 1.3. Let T ⊆ Rd with ρ = ‖ · ‖2. Look at Xθ = 〈W, θ〉, where W ∼ N(0, Id).
To bound, the Gaussian complexity, we want to bound E[supθ∈T Xθ]. Then Xθ − X ′θ =
〈W, θ − θ′〉 ∼ N(0, ‖θ − θ′‖22) ∼ sG(‖θ − θ′‖2).

Proposition 1.1. Let {Xθ, θ ∈ T} be a mean 0 sub-Gaussian process with metric ρ. Then
if D = supθ,oθ∈T ,

E

[
sup
θ,θ̃

(Xθ −Xθ̃
)

]
≤ inf

ε≤D
2

[
sup

ρ(r,r′)≤ε
(Xr −Xr′)

]
+ 32

∫ D

ε

√
logN(u;T, ρ) du︸ ︷︷ ︸
=:J(ε;D;T,ρ)

.

Here, J(ε;D;T, ρ) is known as Dudley’s entropy integral.
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Remark 1.1. This gives an upper bound for E[supθ∈T Xθ] because by the 0 mean condition
and Jensen’s inequality,

E
[
sup
θ∈T

Xθ

]
= E

[
sup
θ,θ′∈T

(Xθ − Eθ′ [Xθ′ ])

]

≤ E

[
sup
θ,θ̃

(Xθ −Xθ̃
)

]
.

Remark 1.2. Compare this to the bound

E

[
sup
θ,θ̃

(Xθ −Xθ̃
)

]
≤ inf

ε≤D
2

[
sup

ρ(r,r′)≤ε
(Xr −Xr′)

]
+ 32D

√
logN(ε;T, ρ).

The integration gives a better bound because
√

logN(ε) is decreasing in ε.

Proof. Take a sequence of ε-coverings corresponding to εm = D/2m for m = 0, 1, 2, 3, . . . , L.
Let Um be the minimal εm-covering of T , so |Um| ≤ N(εm;Tρ). Then define the projection
operation πm(θ) = arg minβ∈Um ρ(θ, β).

This allows us to bound

|Xθ −Xθ̃
| ≤ |Xθ −Xπ2(θ)|+ |Xπ2(θ) −Xπ1(θ)|+ |Xπ1(θ) −Xπ1(θ̃)

|
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+ |X
π1(θ̃)

−X
π2(θ̃)
|+ |X

π2(θ̃)
−X

θ̃
|.

Then we can take the expectation of sup
θ,θ̃

on both sides. What is the purpose of having
all these interpolation points? The first and the last terms have infinitely many choices, so
these are the discretization terms, while the middle terms have only finitely many choices,
so we can apply the maximal inequality.

E

[
sup
θ,θ̃∈T

|Xθ −Xθ̃
|

]
≤ E

[
sup
θ,θ̃∈T

|Xπ1(θ) −Xπ1(θ̃)
|

]
+ 2E

[
sup
θ∈T
|Xπ2(θ) −Xπ1(θ)|

]
+ · · ·+ 2E

[
sup
θ∈T
|XπL(θ) −XπL−1(θ)|

]
+ 2E

[
sup
θ∈T
|XθXπL(θ)|

]
These terms on the right correspond to ε0, ε1, . . . , εL−1, ε∗, respectively. This process will
define a Riemann sum. For the remaining details, see the textbook.

Example 1.4. We want to bound the Gaussian complexity G(B2(1)) = E[supθ∈B2(1)〈W, θ〉]
using chaining. We get the bound

G(B2(1)) ≤ C
∫ 2

0

√
logN(u;B2(1), ‖ · ‖2)︸ ︷︷ ︸

≤d log(2/u+1)

du

≤ C
∫ 2

0

√
d log(2/u+ 1) du

= C
√
d

∫ 2

0

√
log(2/u+ 1) du︸ ︷︷ ︸

C′

�
√
d.
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